Introduction

knot diagram is a 3-dimensional closed knot-line projected on 2 dimensions. If two
A diagrams can be deformed into each other by stretching, shortening or shifting

the line without cutting it, then both diagrams represent the same mathematical
knot. In order to determine whether this is the case, knot invariants can be computed
for each diagram. As the name indicates, the value of each invariant is unaffected by
deformations. This means that even if only one invariant has different values for two
diagrams, then both diagrams can never be deformed into each other, so they must
represent different mathematical knots.

The easiest to determine invariant is the Yes/No property which states whether the
diagram (and thus the knot) is 3-colourable or not.
A knot diagram is called 3-colourable, if

1. each strand (part of the knot-line that can be drawn without lifting the pen) is
coloured with one colour,

2. at least 2 colours are used,

3. on each crossing all three meeting strands have either the same colour or all three
have different colours.

Examples of 3-colourable knots are 31,61 and 74.

Knots that are not 3-colourable may be 5-, 7-, ..., n-colourable (n prime). A knot
is called ‘Fox n-colourable’ ([1],2]) if the first two conditions of 3-colourability and a
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The poster shows diagrams of all 250 knots with maximally 10 crossings.

If a knot has at least one n-colouring for prime n then one colouring with minimal n is
shown. Otherwise, the diagram has only one colour (Blue).

A caption Ap : cd, el , ... indicates that the B knot with A crossings in the Rolfson table
of knots [3] has A many c-colourings and el many e-colourings, ... . In other words, d is
a measure of the degeneracy of the coefficient matrix of the linear algebraic system mod ¢
which results from colouring condition 3.

Results

Although the invariance of knot colouring is known for many years, a colouring classification
of knots is so far not available in databases about knots, like the KnotInfo database [4].

By combining n-colourability and the number of n-colourings for all n as a combined
invariant, we obtain the following table with the columns holding: the crossing number
c, number k. of knots with crossing number ¢, number I. of different combined colour
invariants, and the average number of knots sharing the same combined colour invariant.

Knots may allow very different numbers of n-
colourings. For example, every knot allows 3" (trivial)
3-colourings where each strand has the same colour.

Table 1:  Table of number of com-
bined colour invariants
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Table 2: Table of B(c) = nt e An unexpected and very useful result is a simple ap-

¢ [nmax| knot | B(e) proximate formula for the highest n value nyax that al-
3 3 3 1739 lows n-colourability in dependence of the crossing num-
15 4 1710 ber ¢. It is npax(c) ~ 1771 The benefit of such
57 5, | 1.627 a formula is to check n-colourability only for n up to
6 13 63 1.670 Nmax When nmax 18 exactly known and to check n up to
- 19 7o 1634 n = 1.75"1 for ¢ > 15 when we do not have the exact
3| 37 17 |1.675 value of nmax. Here 1.75 instead of 1.7 adds safety:.
9 o6l 933 | 1.672 In general the computer program is very fast. It de-
107 109 | 10115 |1.684 termines all n-colourings for prime n < 1000 for the
117199 | 11g301  1.698 first 250 knots on a single 3.7 GHz CPU computer in
121353 | 1241188 | 1.705 less than 3 sec and using npax in < 1 sec. For the
131 993 | 1344620 | 1.703 first 313230 knots with up to 15 crossings the compu-
1411103 | 14416476 | 1.714 tation would take over a month on a single CPU. We
151 1823 | 15465606 | 1.710 parallelized the computation.

For single knots of same size computation times may vary widely. For example, for
1576000 1t takes 0.39 sec but for 15,81645 1t takes 2:19 min so over 350 times longer.
The speedups bring more when the maximal number of consecutive over- and under-
passes in a knot is larger.

The complete colourability classification for knots with up to 15 crossings is available at
5]. The module used to perform the computations is part of a freely available interactive
workbench for knots running under linux [6].
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